Numpy实现逻辑回归(Logistic Regression)算法
前言:本文旨在对如何使用 numpy 实现逻辑回归拟合的过程做具体分析,有关逻辑回归原理部分不做过多论述。
数据集准备
准备用于二分类的数据集,可直接复制到对应的 txt 文件-0.017612   14.053064   0
        -1.395634   4.662541    1
        -0.752157   6.538620    0
        -1.322371   7.152853    0
        0.423363    11.054677   0
        0.406704    7.067335    1
        0.667394    12.741452   0
        -2.460150   6.866805    1
        0.569411    9.548755    0
        -0.026632   10.427743   0
        0.850433    6.920334    1
        1.347183    13.175500   0
        1.176813    3.167020    1
        -1.781871   9.097953    0
        -0.566606   5.749003    1
        0.931635    1.589505    1
        -0.024205   6.151823    1
        -0.036453   2.690988    1
        -0.196949   0.444165    1
        1.014459    5.754399    1
        1.985298    3.230619    1
        -1.693453   -0.557540   1
        -0.576525   11.778922   0
        -0.346811   -1.678730   1
        -2.124484   2.672471    1
        1.217916    9.597015    0
        -0.733928   9.098687    0
        -3.642001   -1.618087   1
        0.315985    3.523953    1
        1.416614    9.619232    0
        -0.386323   3.989286    1
        0.556921    8.294984    1
        1.224863    11.587360   0
        -1.347803   -2.406051   1
        1.196604    4.951851    1
        0.275221    9.543647    0
        0.470575    9.332488    0
        -1.889567   9.542662    0
        -1.527893   12.150579   0
        -1.185247   11.309318   0
        -0.445678   3.297303    1
        1.042222    6.105155    1
        -0.618787   10.320986   0
        1.152083    0.548467    1
        0.828534    2.676045    1
        -1.237728   10.549033   0
        -0.683565   -2.166125   1
        0.229456    5.921938    1
        -0.959885   11.555336   0
        0.492911    10.993324   0
        0.184992    8.721488    0
        -0.355715   10.325976   0
        -0.397822   8.058397    0
        0.824839    13.730343   0
        1.507278    5.027866    1
        0.099671    6.835839    1
        -0.344008   10.717485   0
        1.785928    7.718645    1
        -0.918801   11.560217   0
        -0.364009   4.747300    1
        -0.841722   4.119083    1
        0.490426    1.960539    1
        -0.007194   9.075792    0
        0.356107    12.447863   0
        0.342578    12.281162   0
        -0.810823   -1.466018   1
        2.530777    6.476801    1
        1.296683    11.607559   0
        0.475487    12.040035   0
        -0.783277   11.009725   0
        0.074798    11.023650   0
        -1.337472   0.468339    1
        -0.102781   13.763651   0
        -0.147324   2.874846    1
        0.518389    9.887035    0
        1.015399    7.571882    0
        -1.658086   -0.027255   1
        1.319944    2.171228    1
        2.056216    5.019981    1
        -0.851633   4.375691    1
        -1.510047   6.061992    0
        -1.076637   -3.181888   1
        1.821096    10.283990   0
        3.010150    8.401766    1
        -1.099458   1.688274    1
        -0.834872   -1.733869   1
        -0.846637   3.849075    1
        1.400102    12.628781   0
        1.752842    5.468166    1
        0.078557    0.059736    1
        0.089392    -0.715300   1
        1.825662    12.693808   0
        0.197445    9.744638    0
        0.126117    0.922311    1
        -0.679797   1.220530    1
        0.677983    2.556666    1
        0.761349    10.693862   0
        -2.168791   0.143632    1
        1.388610    9.341997    0
        0.317029    14.739025   0
读取数据
构造出[[1,data,data],]与[result,]两种矩阵
1
2
3
4
5
6
7
8
9
10
11
12
from numpy import *
filename = 'Resources/LogisticRegressionSet.txt'
def loadDataSet():
    dataMat = []
    labelMat = [] # 构造两个空列表
    fr = open(filename)
    for line in fr.readlines():
        lineArr = line.strip().split() # 切割元素
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        # 前面的1,表示方程的常量。比如两个特征X1,X2,共需要三个参数,W1+W2*X1+W3*X2
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat构造 Logistic(Sigmoid)函数
1
2
def sigmoid(inX):  # sigmoid函数
    return 1.0 / (1 + exp(-inX))构造梯度上升函数
普通梯度上升
通过矩阵乘法后算出差值反复迭代,利用梯度上升法求出结果,注意矩阵转置的意义
1
2
3
4
5
6
7
8
9
10
11
12
def gradAscent(dataMat, labelMat):  # 梯度上升求最优参数
    dataMatrix = mat(dataMat)  # 将读取的数据转换为矩阵
    classLabels = mat(labelMat).transpose()  # 将读取的数据转换为矩阵
    m, n = shape(dataMatrix)
    alpha = 0.001  # 设置梯度的阀值,该值越大梯度上升幅度越大
    maxCycles = 500  # 设置迭代的次数,一般看实际数据进行设定,有些可能200次就够了
    weights = ones((n, 1))  # 设置初始的参数,并都赋默认值为1。注意这里权重以矩阵形式表示三个参数。
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = (classLabels - h)  # 求导后差值
        weights = weights + alpha * dataMatrix.transpose() * error  # 迭代更新权重
    return weights随机梯度上升
与上述算法的区别在于只选择一行数据更新权重
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def stocGradAscent0(dataMat, labelMat):
# 随机梯度上升,当数据量比较大时,每次迭代都选择全量数据进行计算,
#计算量会非常大。所以采用每次迭代中一次只选择其中的一行数据进行更新权重。
    dataMatrix = mat(dataMat)
    classLabels = labelMat
    m, n = shape(dataMatrix)
    alpha = 0.01
    maxCycles = 500
    weights = ones((n, 1))
    for k in range(maxCycles):
        for i in range(m):  # 遍历计算每一行
            h = sigmoid(sum(dataMatrix[i] * weights))
            error = classLabels[i] - h
            weights = weights + alpha * error * dataMatrix[i].transpose()
    return weights改进版随机梯度上升
该算法与上述算法的区别在于两点:
- 步长随迭代次数的增加而减小
- 采用了随机抽样的方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def stocGradAscent1(dataMat, labelMat):
    # 改进版随机梯度上升,在每次迭代中随机选择样本来更新权重,并且随迭代次数增加,权重变化越小。
    dataMatrix = mat(dataMat)
    classLabels = labelMat
    m, n = shape(dataMatrix)
    weights = ones((n, 1))
    maxCycles = 500
    for j in range(maxCycles):  # 迭代
        dataIndex = [i for i in range(m)]
        for i in range(m):  # 随机遍历每一行
            alpha = 4 / (1 + j + i) + 0.0001  # 随迭代次数增加,权重变化越小。
            randIndex = int(random.uniform(0, len(dataIndex)))  # 随机抽样
            h = sigmoid(sum(dataMatrix[randIndex] * weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex].transpose()
            del (dataIndex[randIndex])  # 去除已经抽取的样本
    return weights画出图像
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
def plotBestFit(weights):  # 画出最终分类的图
    import matplotlib.pyplot as plt
    dataMat, labelMat = loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]
    xcord1 = []
    ycord1 = []
    xcord2 = []
    ycord2 = []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i, 1])
            ycord1.append(dataArr[i, 2])
        else:
            xcord2.append(dataArr[i, 1])
            ycord2.append(dataArr[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111) # 一行一列一个格子
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green') # 画出散点图
    x = arange(-3.0, 3.0, 0.1) # 生成数组
    y = (-weights[0] - weights[1] * x) / weights[2] # 决策边界
    ax.plot(x, y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()定义主函数
1
2
3
4
def main():
    dataMat, labelMat = loadDataSet()
    weights = gradAscent(dataMat, labelMat).getA()
    plotBestFit(weights)调用主函数
1
2
if __name__ == '__main__':
    main()运行结果
- 普通梯度上升
- 随机梯度上升
- 改进版随机梯度上升
本文源码参考自 逻辑回归原理(python 代码实现)









